Mechanisms for Enhanced Hydrophobicity by Atomic-Scale Roughness

نویسندگان

  • Yumi Katasho
  • Yunfeng Liang
  • Sumihiko Murata
  • Yasuhiro Fukunaka
  • Toshifumi Matsuoka
  • Satoru Takahashi
چکیده

It is well known that the close-packed CF3-terminated solid surface is among the most hydrophobic surfaces in nature. Molecular dynamic simulations show that this hydrophobicity can be further enhanced by the atomic-scale roughness. Consequently, the hydrophobic gap width is enlarged to about 0.6 nm for roughened CF3-terminated solid surfaces. In contrast, the hydrophobic gap width does not increase too much for a rough CH3-terminated solid surface. We show that the CF3-terminated surface exists in a microscopic Cassie-Baxter state, whereas the CH3-terminated surface exists as a microscopic Wenzel state. This finding elucidates the underlying mechanism for the different widths of the observed hydrophobic gap. The cage structure of the water molecules (with integrated hydrogen bonds) around CH3 terminal assemblies on the solid surface provides an explanation for the mechanism by which the CH3-terminated surface is less hydrophobic than the CF3-terminated surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of microwave treatment on surface roughness, hydrophobicity, and chemical composition of galena

The influence of microwave treatment on the surface roughness, hydrophobicity, and chemical composition of galena was studied. The pure galena specimens and purified galena concentrate were used in this work. A conventional multi-modal oven (with a frequency of 2.45 GHz and a maximum power of 900 W) was used to conduct the experiments. The results obtained from the atomic-force microscopy analy...

متن کامل

Influence of Surface Properties on Adhesion Forces and Attachment of Streptococcus mutans to Zirconia In Vitro

Zirconia is becoming a prevalent material in dentistry. However, any foreign bodies inserted may provide new niches for the bacteria in oral cavity. The object of this study was to explore the effect of surface properties including surface roughness and hydrophobicity on the adhesion and biofilm formation of Streptococcus mutans (S. mutans) to zirconia. Atomic force microscopy was employed to d...

متن کامل

The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants

BACKGROUND This study aims to investigate bacterial adhesion on different titanium and ceramic implant surfaces, to correlate these findings with surface roughness and surface hydrophobicity, and to define the predominant factor for bacterial adhesion for each material. METHODS Zirconia and titanium specimens with different surface textures and wettability (5.0 mm in diameter, 1.0 mm in heigh...

متن کامل

Effect of Substrate Surface Topography on Forensic Development of Latent Fingerprints with Iron Oxide Powder Suspension

Latent fingerprint deposition and effectiveness of detection are strongly affected by the surface on which prints are deposited. Material properties, surface roughness, morphology, chemistry and hydrophobicity can affect the usefulness or efficacy of forensic print development techniques. Established protocols outline appropriate techniques and sequences of processes for broad categories of ope...

متن کامل

Hydrophobicity Properties of Graphite and Reduced Graphene Oxide of The Polysulfone (PSf) Mixed Matrix Membrane

Hydrophobicity properties of graphite and green synthesized graphene (gsG) from exfoliated graphite/GO towards polymer membrane characteristic and properties at different weight percentage concentrations (1, 2, 3, 4 and 5 wt. %) were investigated. PSf/graphite and PSf/gsG membranes were characterized in term of hydrophobicity, surface bonding, surface roughness and porosity. FTIR peaks revealed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015